
Immune-inspired Technique for

Tudor Cioara, Cristina Bianca Pop, Ionut Anghel, Ioan Salomie, Mihaela Dinsoreanu,

Irina Condor and Fodor Mihaly
Technical University of Cluj-Napoca

Cluj-Napoca, Romania

{tudor.cioara, cristina.pop, ionut.anghel, ioan.salomie, mihaela.dinsoreanu}@cs.utcluj.ro

Abstract This paper presents an immune-inspired technique for

optimizing a server energy consumption. The proposed technique

is similar with an artificial immune system associated to a server,

aiming to detect non-optimal server energy consumption states

and to take the appropriate actions that would bring the server

into an optimal state. The optimization technique has two main

stages: an initialization stage and a self-optimization stage. In the

initialization stage the server is monitored for a specific period of

time to collect energy consumption historical raw data for

identifying associations between the server energy consumption

states and the appropriate optimization actions. In the self-

optimization stage, energy consumption server state snapshots

are taken at regular time intervals and formally represented

using a biologically-inspired antigen model. The obtained antigen

is then classified as self (optimal energy consumption state) or

non-self (non-optimal energy consumption state) using a set of

detectors obtained in the initialization stage. For non-self

antigens a biologically-inspired clonal selection approach is used

to determine the actions that need to be taken to bring the server

in an optimal energy consumption state.

Keywords energy consumption; immune-inspired; self-

optimizing; clonal selection; negative selection

I. INTRODUCTION AND RELATED WORK

Nowadays IT infrastructures and data centers are becoming

more and more complex. This complexity leads to high energy

consumption and in this context, the need for developing

techniques that optimize energy consumption while preserving

performance requirements is a must. It has been noticed that

biology offers many clues regarding the construction of

optimization systems. Biological systems are efficient, robust,

flexible, self-organizing, self-repairing, self-optimizing, self-

protecting, self-adapting, all these characteristics being desired

in any IT system. Therefore, it seems natural that by inspiring

from the nature observed processes we can develop IT systems

able to (i) self-organizing and self-optimizing themselves like

colonies of ants, flocks of birds or banks of fish, (ii) self-

protecting and self-managing themselves as the autonomous

nervous system or (iii) self-healing themselves as the immune

system does. However we should be aware that there is a limit

for this inspiration. We should not attempt to fully imitate

biological systems because it is likely to have very limited

success, as the flight pioneers have noticed [1]. The

methodology required to develop biologically-inspired

techniques includes the following steps: (1) the analogies

between biology and IT systems at the conceptual level should

be identified, (2) the biological entities, relationships and

processes should be modeled from the computer science

perspective and (3) a reverse mapping should be performed for

validation purposes.

Our vision is

energy consumption can be designed and developed by

inspiring from biology. In this paper, we present an immune-

inspired technique for optimizing server energy consumption

while preserving its set of Green Performance Indicators and

Key Performance Indicators (KPI) [2] [3]. This technique is

similar with an artificial immune system associated to a server

being able to detect non-optimal server energy consumption

states (similar to biological pathogens) and to take the

appropriate actions (similar to the biological immune response)

required to bring the server into an optimal state. The

optimization technique has two main stages: an initialization

stage and a self-optimization stage. Within the initialization

stage the server is monitored for a specific period of time to

collect energy consumption historical raw data with the goal of

identifying associations between the server energy

consumption states and the appropriate optimization actions.

Such an association represents an artificial immune cell

composed of a detector (server energy consumption state) and

an effector (the optimization actions).

The self-optimization stage is designed as a control

feedback loop with the following MAPE phases: Monitoring,

Analyzing, Planning and Execution. In the monitoring phase,

energy consumption server state snapshots are taken at regular

time intervals and formally represented using a biologically-

inspired antigen model. The analysis phase classifies the

current antigen as self (optimal energy consumption state) or

non-self (non-optimal energy consumption state) using the set

of detectors obtained in the initialization stage. The planning

phase determines the actions (referred as effectors) that need to

be taken to bring the server in an optimal energy consumption

state using a biologically-inspired clonal selection approach.

Within clonal selection, the affinity between the existing

effectors and the current antigen is evaluated. The high affinity

effectors are cloned and mutated to obtain the best effector to

be run in the execution phase aiming at bringing the server into

an optimal state.

978-1-4244-8230-6/10/$26.00 ©2010 IEEE 273

In the biologically-inspired computing domain literature

we have identified two main research directions: immune-

computing and swarm intelligence.

Immune-computing uses ideas inspired by the biological

immune system specific concepts and processes to design

algorithms and techniques used to solve complex problems

such as, learning, optimization and adaptive control [24]. The

most important immune-inspired computational models

relevant for the current research are the negative selection and

the clonal selection models.

 The negative selection models are inspired by a biological

process aiming at training immature immune T-cells to

correctly discriminate self molecules from the non-self ones.

The first negative selection algorithm [4] was designed to

generate detectors (T-cells) able to identify situations in which

unauthorized changes led to the appearance of non-self strings

(non-self antigens) in a set of self-strings that had to be

protected [22]. In [5], the negative selection algorithm is

applied to network intrusion detection. In this case, self-cells

are represented as the frequently occurring data paths (source

ip address, destination ip address, communication port), while

non-self cells are considered to be the data-paths that are not

normally observed on the network.

The clonal selection models are inspired by the biological

process in which B-cells specialize through affinity maturation

and somatic hyper-mutation to provide a specific immune

response when a newly pathogen is encountered. The first

proposed clonal selection algorithm [6] was applied to function

optimization and pattern recognition. In the case of function

optimization, the candidate solutions represent the immune

cells, while the antigen is the function that needs to be

optimized. The value of the function for a particular solution is

similar to the affinity between the immune cell and the antigen.

In pattern recognition problems, the aim of applying the clonal

selection algorithm is to produce a set of elements which can

be used to recognize specific patterns [8]. The clonal selection

algorithm can be used to solve other optimization problems,

such as combinatorial optimization [7]. In [9], the clonal

selection algorithm is used for selecting the optimal solution in

automatic Web service composition. In this approach, a

candidate Web service composition solution is mapped to an

immune cell, a multi-criteria function that evaluates the QoS

and semantic quality of a composition solution is mapped to an

antigen, while affinity is the value of the multi-criteria function

for a specific composition solution.

Swarm intelligence aims at designing techniques and

algorithms inspired by the collective behavior of social insects,

birds, fish and even humans. The most important techniques

that have been developed are ant colony optimization (ACO)
[10] and particle swarm optimization (PSO) [11].

The ant colony optimization techniques are inspired by the

foraging behavior of ants. This technique considers a set of

artificial ants which identify the solutions of an optimization

problem and use a stigmergic type of communication (similar

to real ants that communicate through the trails of pheromone

they leave on their way) to exchange information about the

quality of the solutions they find [10]. Ant colony optimization

can be used to solve combinatorial optimization problems [12]

and to find the shortest path in telecommunication networks

[13]. The stigmergic communication using pheromones is used

in [14] as a means of communication between agents in a

wireless sensor network. Agents emit replication or migration

pheromones encoding sensor data according to their local and

external network conditions [14]. [15] applies pheromone-

based communication in pervasive environments as a means of

communication between mobile agents. [16] presents a method

for data clustering inspired by the way ants organize objects in

clusters according to their properties. Within this method, a set

of artificial ants pick up items occupying random (initially)

positions on a grid and deposit them in areas containing other

similar items.

The particle swarm optimization techniques are inspired by

the collective behavior of birds in search of food. In this

technique a number of artificial particles which are collectively

moving in a search space are used to find the global optima

[22]. The technique is applied to various domains such as

function optimization [17] or data clustering [18].

Regarding the use of biologically-inspired techniques for

power management, few approaches can be found in the

literature. Since biological systems naturally tend to conserve

their energy, many simple principles found in the biological

systems might be used in IT power management [19]. The

adoption of biological principles such as decentralization,

autonomy, natural selection or symbiosis in the process of

designing and building applications or services on top of server

farms is a novel research direction [20]. A service is designed

as a biological entity, equivalent to an individual bee in a bee

colony that competes or collaborates for computing resources.

Using natural selection principles, the services that waste

energy (i.e. services that gain resources but fail to use them) are

banned for execution. In [14] a biologically-inspired agent

based approach is used to manage the energy consumption in a

wireless sensors network. The agent behavior focuses on

biologically-inspired actions (e.g. pheromone emission,

migration, death), each of them having an energetic cost

associated. Through these actions, the life time and the state of

each agent evolve autonomously and there is no need of a

centralized control unit. In [21] swarm intelligence is combined

with immune mechanisms to design network applications that

adapt to dynamic changes in the network.

This paper is structured as follows: section II presents an

immune-inspired model for server energy consumption

optimization, section III describes the biologically-inspired

algorithms, section IV presents the experimental results while

section V concludes the paper and shows the future work.

II. IMMUNE-INSPIRED MODEL FOR SERVER ENERGY

CONSUMPTION OPTIMIZATION

After a thorough analysis of the biologically-inspired

computing models we reached the conclusion that the

biological immune system would represent a good source of

inspiration in designing a technique for energy optimization. In

the following sub-sections we present the immune concepts

and processes that are relevant for our approach as well as the

274

mapping of these concepts to the problem of energy

optimization.

A. Biological Background

The main objective of the biological immune system is to

protect a living organism against harmful pathogens (antigen

presenting cells that might cause diseases). In order to

accomplish this, the immune system provides a collection of

countermeasures able to detect and eliminate pathogens [22].

These countermeasures are provided by the immune system

constituents who circulate throughout the body in the blood

and the lymph and perform their functions in a distributed

manner, interacting only through localized rules [25].

 The immune system can be viewed as a layered

architecture. When a pathogen attacks a living organism it first

needs to penetrate an external defense layer formed by the skin

or the membranes that cover organs. If the pathogen succeeds

to go through this first layer it interacts with a second defense

layer which is represented by the innate immune system. The

innate immune system consists of a set of detector and effector

immune cells capable of rendering the pathogen harmless [22].

However, these two first defense layers are unspecific (they do

not make any distinction between pathogens) and do not

change over time.

In time, pathogens adapt themselves such that the immune

system will no longer have the suitable detector and effector

cells to use. This is the moment in which the third defense

layer, corresponding to the adaptive immune system, comes

into action by generating the appropriate detector and effector

cells. It is very important that the new cells do not detect the

self-cells as a pathogen, since this will lead to autoimmune

diseases. Furthermore, the new cells must be efficient in the

fight with the pathogen.

The generated cells pass through several phases until they

are considered as part of the immune system [22]. The first

phase consists of a negative selection process: each cell is

tested against molecules of the host for auto-reactivity and it is

eliminated if it proves to attack the host tissue. Next, through

clonal selection, new and more specific effectors are generated:

the effectors with the highest affinity with respect to the

pathogen clone themselves. The clones are submitted to an

affinity maturation process aiming at increasing their

specificity for the invading pathogen. The resulting matured

clones are submitted to a new selection process in which the

clones having low affinity are eliminated while the ones with

high affinity are differentiated into plasma and memory cells.

The plasma cells secrete antibodies used to immediately

eliminate the pathogen, while memory cells are kept in the

immune memory to assure that the immune response to a

similar pathogen encountered in the future will be much faster.

In conclusion, the immune system issues two types of

immune responses: (i) a slower primary immune response -

issued at a first encounter with an unknown pathogen, situation

that requires the generation of new detector and effector

immune cells and (ii) a faster secondary immune response -

issued at an encounter with a known pathogen, situation that

requires the use of the appropriate immune cells stored in the

immune memory.

B. From Biological Immune Systems to Energy Optimization

To optimize the energy consumption at a server level we

have layer.

One of the most important issues that need to be addressed in

designing biologically-inspired computing techniques is to

map the biological concepts to the problem that needs to be

solved. In table I we present a mapping of adaptive immune

system concepts and processe

energy optimization.

TABLE I. MAPPING OF IMMUNE SYSTEM CONCEPTS TO THE PROBLEM

OF SERVER S ENERGY OPTIMIZATION

 Immune System

Concept

Energy Optimization

System Adaptive immune
system

Used to identify new server energy
consumption states and determine

the associated optimization actions

Entities

Antigen The current server energy

consumption state

Self antigen Optimal server energy consumption

state

Non-self antigen Non-optimal server energy

consumption state

Immune cell -
Detector

Values of server energy
consumption states

Immune cell -

Effector

Optimization actions

Clone Copy of the optimization actions

Immune memory Knowledge base: server energy

consumption states and associated
optimization actions

Processes Primary response First encounter with an unknown

server energy consumption state,
generate the appropriate

optimization actions

Secondary

response

Encounter with a known server

energy consumption state, select the
adaptation action plan from the

knowledge base

Affinity between

antigen and
immune cell

Similarity between the current

server energy consumption state and
a state stored in the knowledge base

Negative selection Generates and improves a set of

predefined detectors

Clonal selection,

Affinity
maturation

Generates, improves and selects the

optimization actions

An antigen represents the current energy consumption

state of a server. The energy consumption state is indirectly

given by the workload and resource usage snapshot in a

specific timestamp. We formally define an antigen as:

),(= ttt PRLSRLA (1)

In (1), SRLt is the list of current resources usage for the

server in the moment of time t (see also (2)) and PRL

represents the list of processes requests for server resources

(see also (3)).

},,{ tttt levelMEMlevelHDDlevelCPUSRL

 (2)

We have modeled in our antigen only those server

resources on which Dynamic Power Management actions (i.e.

275

modify the resource performance state to save energy) can

apply (Hard-disk, Memory and Processor).

 },,{ tttt levelMEMlevelHDDlevelCPUPRL

(3)

We define a self-antigen as an energy consumption state in

which no optimization actions are required. On the other hand,

a non-self antigen represents a non-optimal energy

consumption server state in which optimization actions have

to be generated, selected and enforced. The self/non-self

discrimination of an antigen part of the negative selection

process is performed by comparing it to two predefined

optimal antigens: the idle antigen that represents the optimal

idle state of the system and the active antigen that represents

the optimal active state of the system. The levels of the active

optimal antigen are considered as levelCPU = 7, levelMEM =

7, levelHDD = 2, while the levels of the idle optimal antigen

are considered as levelCPU = 1, levelMEM = 1 and levelHDD

= 0. The affinity a, between current antigen / idle antigen and

the afinity between current antigen / active antigen is

determined as shown in (4) (for current antigen / idle antigen).

||=),(
,

idleS

idle
SRL

idle
levelR

t
SRL

S
levelR

idlet levelRlevelRSRLSRLa (4)

If one of these affinities is below a certain threshold, T,

then the antigen is self, otherwise it is non-self:

selfnonotherwise

selfTSRLSRLaTSRLSRLa activetidlet),(||),(

(5)

A detector matches the structure of an antigen and

represents a server energy consumption state for which the

optimization actions are already known (relation (6)). The

detector is used to classify the antigens in self and non-self.

),(= DD PRLSRLD (6)

The effector is a structure which contains the optimization

actions that need to be executed for a non-self antigen

(relation (7)). It is described by the sequence of actions to be

taken for reaching an optimal state.

},...,,{ 21 naaaE (7)

The execution of an optimization action transitions the

server from the energy state of time t into a t+1 time state

(relation (8)). We have modeled and used only DPM actions

such as modifying the frequency of the processor, putting the

hard disk to sleep or on stand-by .

 1: tt SRLSRLa (8)

A detector and the optimization actions associated form an

immune cell (see (9)) which is stored in an immune memory

knowledge base (see (10)).

),(= EDIC (9)

},...,,{ 21 nICICICIM (10)

The immune memory is limited in size and cannot keep

every immune cell ever produced. The immune cells are

replaced according to how much and how recently they were

used. The usefulness of each cell is computed in the following

way:

rankTimeusedTimesICU __)((11)

where Times_used represents how many times the immune

cell IC was used so far and Time_rank represents how recently

the immune cell IC was used. The constants]1,0[, give

the relative importance of each of the two components.

In the energy optimization problem we use the behavior of

the adaptive immune system for the situation in which a new

server energy consumption state is encountered. In this case,

the first step is to search the immune memory knowledge base

to determine if a previous similar situation exists by measuring

the affinity between the knowledge base immune cells (the

detector part) and the current antigen (server consuming state).

We compute the affinity between a detector and an antigen

using Manhattan distance (relation (12)) between their SRLs

(resources of the system) and PRLs (requests of the

processes).

||=),(
,

DA

D
SRL

D
levelR

A
SRL

A
levelR

levelRlevelRDAa

 ||
,

DA

D
PRL

D
levelR

A
PRL

A
levelR

levelRlevelR (12)

The immune celll efector execution utility for the curent

antigen can be determined using the current antigen, the

predicted antigen and the predefined optimal antigen (for idle

and active server states).

The predicted antigen over x time units is generated using

the the Holt-Winters Method [23] for trend forecasting and

prediction. We predict the server resources required values at

the moement t+x taking into acount the curent antigen and the

incoming workload.

),(= xttxt PRLSRLA (13)

}},,{,{= where MEMHDDCPURlevelRPRL xtxt (14)

To predict the next requirement for each server resources a

liniar regresion approach is used. We use three types of

components in prediction (relation (15)): the estimate

requirements value (ER), the workload trend (TR) and the

server resources maximum workload (to prevent the prediction

of requirements higher than the server maximum workload).

)}max(,min{= levelRxTRERlevelR ttxt

tttt levelRTRERER)(1)(= 0110 (15)

))((1= 1111 tttt ERERTRTR

The constants [0,1], 10 have the following meaning: if

0
is smaller, then more weight is given to recent levels and

less weight is given to older levels. Similarly, 1 controls the

importance given to the current or past trends.

276

Figure 1. The biologically-inspired optimization technique MAPE phases

III. THE BIO-INSPIRED ENERGY OPTIMIZATION TECHNIQUE

The proposed biologically-inspired optimization technique

has two main stages: an initialization stage and a self-

optimization stage. Within the initialization stage the server is

monitored for a specific period of time to collect energy

consumption historical raw data with the goal of identifying

associations between the server energy consumption states and

the appropriate optimization actions. During this stage an

initial immune memory knowledge base is built using a

negative selection process (see Fig. 2). The immune memory

knowledge base is enhanced and refined in the self-

optimization stage.

1. Algorithm NEGATIVE-SELECTION

2. Input: AR set of antigens; ; n population size; c cloning rate;

 m mutation step; T affinity threshold

3. Output: IM immune memory
4. Comments: A antigen; IS-SELF detects if an antigen is self/ non-

self; D detector; SRLA/PRLA system resource levels/process

request levels of antigen A; E effector; SRLoptimal optimal system
resource levels; IM immune memory

5. begin

6. for i = 1 to |AR| do
7. A = AR[i]

8. if (IS-SELF(A)) then

9. D = (SRLA, PRLA)
10. E = CLONAL-SELECTION(D, n, c, m, T)

11. IM = IM U {(D,E)}

12. end if

13. end for

14. end

Figure 2. Negative selection algorithm

In the following sub-sections we focus on the bio-inspired

optimization technique, the self-optimization stage, presenting

its MAPE phases and highlighting the main algorithms used at

each phase (Fig. 1).

A. Monitoring phase

In the monitoring phase, energy consumption server state

snapshots are taken at regular time intervals and formally

represented using a biologically-inspired antigen model. A

snapshot includes information about the CPU, HDD and MEM

utilization levels. Also in this phase the processes server

resources requests are recorded. The algorithm used to create

the antigen for the current energy consumption state is

presented in Fig. 3.

1. Algorithm CREATE-ANTIGEN

2. Input: P active process request levels; SRL system resource

levels

3. Output: A Antigen

4. Comments: GET-MAX returns the maximum CPU/HDD process

request level; GET-SUM computes the sum of the memory process
request levels

5. begin

6. levelCPUt = GET-MAX(PCPU)
7. levelMEMt = GET-SUM(PMEM)

8. levelHDDt = GET-MAX(PHDD)

9. A = (SRL, (levelCPUt, levelHDDt, levelMEMt))
10. return A

11. end

Figure 3. Antigen creation algorithm

B. Analysis phase

The analysis phase classifies the current antigen as self

(optimal energy consumption state) or non-self (non-optimal

277

energy consumption state) using the set of detectors obtained

in the initialization phase. The self/non-self discrimination

(see Fig. 4) is performed by evaluating the affinity

(COMPUTE-AFFINITY) between the current antigen and an

idle/active antigen using relation (4).

1. Algorithm SELF-NON-SELF-DISCRIMINATION

2. Input: A current antigen; A0 idle antigen; AA active antigen; T

threshold
3. Output: self / non-self antigen

4. Comments: a1, a2 the affinity between the current antigen and the

idle/active antigen; T affinity threshold

5. begin

6. a1 = COMPUTE-AFINITY(A, A0)

7. a2 = COMPUTE-AFINITY (A, AA)
8. if (a1 < T) or (a2 < T) then return self

9. return non-self

10. end

Figure 4. Self / non-self discrimination algorithm

C. Planning phase

The planning phase determines the actions that need to be

taken to bring the server in an optimal energy consumption

state. The planning has the following steps.

Step1. The immune memory knowledge base is checked to

determine if similar server energy consumption states have

been previously encountered. Relation (12) is used to measure

the affinity between the knowledge base immune cells (the

detector part) and the current antigen (server consuming state).

If a similar server energy consumption states is found the

associated optimization actions are executed.

Step2. If no similar server energy consumption state is

found then new optimization actions need to be generated.

Step3. Use a clonal selection-based approach on the

memory cells with the highest affinity to the current energy

situation (SELECT-HIGHEST-AFFINITY-CELLS) to

generate the best sequence of optimization actions (see Fig. 5).

1. Algorithm CLONAL-SELECTION

2. Input: D detector to clone; n population size; c cloning rate;

 m mutation step; T affinity threshold

3. Output: E new effector
4. Comments: RH set of effectors with the highest affinity regarding

the current antigen, the predicted antigen and the optimal system

resource levels; CLONE clones the elements in RH c times; RM - set
of mutated RH elements; m mutation rate; RR set of randomly

generated effectors; SELECT-TOP selects the best effectors;
SELECT-BEST selects the best effector E; UTILITY computes

the utility of an effector; T utility threshold

5. begin

6. RH -HIGHEST-AFFINITY-CELLS()

7. repeat

8. RH = CLONE(RH,c)
9. RM = MUTATE(RH, m)

10. RR = GENERATE-RANDOM()

11. RH = SELECT-TOP(RH U RM U RR)

12. E = SELECT-BEST(RH)
13. until (UTILITY(E, Acurrent, Apredicted, SRLoptimal) < T) or

 (cutoff reached)

14. return E

15. end

Figure 5. Clonal selection algorithm

The high affinity memory cells are mutated using a

reinforcement learning-based strategy (see Fig. 6).

1. Algorithm MUTATE

2. Input: RH - set of effectors to mutate, m mutation step

3. Output: RM - mutated set of effectors

4. Comments: E effector; GET-NR-RESOURCES returns the
number of monitored system resources; MUTATE-RESOURCE -

modifies the value of the resource with the index j with + or the

mutation step m; EPLUS/EMINUS the mutated effector; UTILITY

computes the utility of an effector

5. begin

6. RM =

7. for i = 1 to |RH |do

8. E = RH[i]

9. for j =1 to GET-NR-RESOURCES() do
10. EPLUS = MUTATE-RESOURCE(E, j, m,+)

11. if (UTILITY(EPLUS) > UTILITY(E)) then E = EPLUS

12. EMINUS = MUTATE-RESOURCE(E, j, m,-)
13. if (UTILITY(EMINUS) > UTILITY(E)) then E = EMINUS

14. end for

15. RM = RM U {E}

16. end for

17. return RM

18. end

Figure 6. Mutation algorithm

D. Execution phase

In this phase the optimization actions generated in the

planning phase are enforced on the server and a new immune

cell is created and stored in the immune memory (see Fig. 7).

1. Algorithm EXECUTE-OPTIMIZATION-ACTION

2. Input: Acurrent the current antigen, Ecurrent the efector

 determined in the planning phase, IM current version of

 the immune memory
3. Output: server energy optimal state

4. Comments: EXECUTE-ACTION executes the actions encoded in

an effector; IC immune cell; IM immune memory

5. begin

6. EXECUTE-ACTION(Ecurrent)

7. IC = (Acurrent, Ecurrent)

8. IM = IM U { (D,E) }

9. end

Figure 7. Execution phase algorithm

IV. EXPERIMENTAL RESULTS

We have tested our solution on a system with a dual core

CPU, two hard disks and a memory. The technical

characteristics are summarized in Table 2.

TABLE II. HARDWARE RESOURCES

CPU Intel Core 2 Duo (2.4 GHz)

HDD0 500 GB, 7200 rpm

HDD1 160 GB, 7200 rpm

Memory 4 GB

The software resources involved in the testing of the self-

optimizing algorithm consist of: (i) Ubuntu 10.04, 2.6.32-21-

generic kernel as the server operating system, (ii) Hyperic

Sigar [26], cpufreq-info, hdparm for monitoring the server

components, (iii) cpufreq-set, hdparm, sysctl to enforce the

278

optimization actions and (iv) the stress program to generate

the testing workload (see Fig. 8). The threshold T is set to 1.0,

and the prediction constants are set to 5.010 .

Controlling Tools

sysctl
cpufreq-

set
hdparm

Monitoring Tools

Hyperic Sigar cpufreq-info hdparm

Ubuntu 10.04 kernel

CPU HDD MEM

Stress Tool

CPU workersvm-workers vm-bytesvm-hang timeout

Figure 8. The self-optimizing software resources stack

For testing purposes, we have generated a number of

resource-intensive tasks, along with their process requirements

using the stress tool. The stress tool uses the following

parameters to generate the proper workload:

 CPU workers how many workers to launch running

on sqrt(). More workers imply more CPU load.

 Vm-workers how many workers to launch running

on malloc()/free(). We only launch one, as we need to

occupy memory without affecting the CPU.

 vm-bytes how many bytes of memory to occupy

during malloc().

 vm-hang wait period before freeing memory (in

seconds).

 timeout how long to stress the system (in seconds).

To wake the HDDs, we simply periodically create/delete a

text file. A HDD is awaken if there is any attempt to access it.

During the initialization stage, the system is monitored and

most representative antigens are selected. Detectors and

effectors are created from these antigens, which form the basis

of the innate immune system. Negative selection is applied to

each detector, in order to test if it is auto-reactive. After

completing the initialization stage, the optimization stage is

started. The optimization stage uses a 2 seconds time interval

to run all its MAPE phases.

Fig. 9 presents the adaptation actions taken by the self-

optimizing algorithm to distribute the incoming workload in

an energy efficient manner. It can be noticed that by correctly

predicting the next antigen, the CPU, HDD and MEM states

closely follow the incoming workload. In this way, the

following energy inefficient situations are avoided: (i) putting

the CPU/HDD/MEM in a low power state when there is a high

workload in the near future and (ii) putting the CPU/HDD/

MEM in a high power state for a short peak workload (over

provisioned resources problem is avoided).

V. CONCLUSIONS

This paper presents an immune-inspired model and

technique for optimizing the server energy consumption. The

proposed technique is able to detect non-optimal server energy

consumption states and to take the appropriate actions for

bringing the server into an optimal energy consumption state.

The results are promising, showing that the self-optimization

technique is able to correctly predict the server CPU, MEM

and HDD workload values. By executing dynamic power

management actions, the server computing resources energy

states closely follow the incoming workload.

For future work we intend to determine the server energy

efficiency by means of a power meter and by comparing the

server energy consumption when the server is managed using

our self-optimization algorithm and when the default operating

system management is applied.

Figure 9. Server resources evolution over time

ACKNOWLEDGMENT

The work has been done in the context of the EU FP7
GAMES project [27].

REFERENCES

[1]

of the Fourth IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems, pp. 187-195, 2007.

[2] A. Barroso, U. Hölzle, The Case for Energy-Proportional Computing ,
IEEE Computer, vol. 40, 2007.

279

[3]
Uptime Institute, Whitepaper, 2007.

[4] -nonself
discrimination in
Research in Security and Privacy, IEEE Computer Society Press, 1994.

[5]
Syst): 443 - 473. 2000.

[6] L. N. De Castro, and F. J. Von Zuben, The clonal selection algorithm
with engineering applications Proceedings of GECCO, Las Vegas, pp.
36 39, 2000.

[7]
Transactions on

Evolutionary Computation, Special Issue on Artificial Immune Systems,
vol. 6, n. 3, pp. 239-251, 2002.

[8]

Recognition, J. M. Corchado, L. Alonso, and C. Fyfe (eds.), SOCO-
2002, University of Paisley, UK, pp. 67-84, 2002.

[9] C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, I. Vartic, M. Vlad,
-

of the 11th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, Timisoara (Romania), September
2009, ISBN: 978-0-7695-3964-5, pp.376-383, 2009.

[10] -
Artificial Ants as a C
Computational Intelligence Magazine, 2006.

[11] J. Kennedy and R. Eberhart, Particle swarm optimization Proceedings
of IEEE International Conference on Neural Networks, Piscataway, NJ.
pp. 1942-1948, 1995.

[12] W. J. Gut

Albrecht and T. Steinh¨ofl, Eds., vol. 2827. Berlin, Germany: Springer
Verlag, pp. 10 25, 2003.

[13] lication to adaptive

Libre de Bruxelles, Brussels, Belgium, 2004.

[14] P. Boonma, J. Suzuki, "Biologically-inspired Adaptive Power
Management for Wireless Sensor Networks," In G. Aggelou (ed.),
Handbook of Wireless Mesh & Sensor Networking, Chapter 3.4.8, pp.
190 - 202, McGraw-Hill, ISBN 978-0071482561, 2008.

[15] M. Mamei, F. Zambonelli, Pervasive pheromone-based interaction with
RFID tags ACM Transactions on Autonomic Adaptation Systems, Vol
2 (2), Article 4, June 2007.

[16] J. Handl, J. Knowles, M. Dorigo, "Ant-Based Clustering and
Topographic Mapping", Artificial Life 12(1), 2006.

[17]
particle swarm optimizer for multimodal
Proceedings of Genetic and Evolutionary Computation Conference, pp.
105 116, 2004.

[18]

Mining, Springer Verlag, Germany, ISBN 978-0-387-69934-9, pp. 279-
313, 2007.

[19] B. W. Verdaasdonk, H. F. J. M. Koopman, F. C. T. van der Helm,
"Energy efficient walking with central pattern generators: from passive
dynamic walking to biologically inspired control", Springer-Verlag,
Biological Cybernetics, Volume 101 , Issue 1 (August 2009), Pages:
49-61, 2009, ISSN:0340-1200.

[20] P. Champrasert, J. Suzuki, "SymbioticSphere: A Biologically-Inspired
Autonomic Architecture for Self-Adaptive and Self-Healing Server
Farms" Proceedings of the 2nd IEEE International Workshop on
Autonomic Communications and Computing (ACC), June 2006.

[21] -inspired
Architecture for Self-
In F. Dressler and I. Carreras (eds.) Advances in Biologically Inspired
Information Systems: Models, Methods and Tools, Chapter 2, pp. 21 -
45, Springer, ISBN 978-3540726920, August 2007.

[22] D. Floreano, C. Mattiussi. Bio-Inspired Artificial Intelligence
Theories, Methods, and Technologies . MIT Press, 2008.

[23] Tikunov, D. Nishimura T., "Traffic prediction for mobile network using
Holt- - 5, ISBN:
978-953-6114-95-5, 2007.

[24] L. N. Castro, "Fundamentals of Natural Computing Basic Concepts,
Algorithms and Applications", Chapman & Hall/CRC, ISBN: 1-58488-
643-9, 2006.

[25] An Interpretative In
Design Principles for the Immune System and other Distributed

Autonomous Systems Oxford University Press, Eds, I. Cohen and L.
Segel. 2001.

[26] Hyperic Sigar, http://www.hyperic.com/products/sigar

[27] GAMES Research Project, http://www.green-datacenters.eu/

280

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (These settings are for Acrobat Distiller 6.0 and match the "Required" setting files for PDF specification version 4.0.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

