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Abstract  This paper presents an immune-inspired technique for 

optimizing a server energy consumption. The proposed technique 

is similar with an artificial immune system associated to a server, 

aiming to detect non-optimal server energy consumption states 

and to take the appropriate actions that would bring the server 

into an optimal state. The optimization technique has two main 

stages: an initialization stage and a self-optimization stage. In the 

initialization stage the server is monitored for a specific period of 

time to collect energy consumption historical raw data for 

identifying associations between the server energy consumption 

states and the appropriate optimization actions. In the self-

optimization stage, energy consumption server state snapshots 

are taken at regular time intervals and formally represented 

using a biologically-inspired antigen model. The obtained antigen 

is then classified as self (optimal energy consumption state) or 

non-self (non-optimal energy consumption state) using a set of 

detectors obtained in the initialization stage. For non-self 

antigens a biologically-inspired clonal selection approach is used 

to determine the actions that need to be taken to bring the server 

in an optimal energy consumption state. 

Keywords energy consumption; immune-inspired; self-

optimizing;  clonal selection;  negative selection 

I.  INTRODUCTION AND RELATED WORK 

Nowadays IT infrastructures and data centers are becoming 

more and more complex. This complexity leads to high energy 

consumption and in this context, the need for developing 

techniques that optimize energy consumption while preserving 

performance requirements is a must. It has been noticed that 

biology offers many clues regarding the construction of 

optimization systems. Biological systems are efficient, robust, 

flexible, self-organizing, self-repairing, self-optimizing, self-

protecting, self-adapting, all these characteristics being desired 

in any IT system. Therefore, it seems natural that by inspiring 

from the nature observed processes we can develop IT systems 

able to (i) self-organizing and self-optimizing themselves like 

colonies of ants, flocks of birds or banks of fish, (ii) self-

protecting and self-managing  themselves as the autonomous 

nervous system or (iii) self-healing themselves as the immune 

system does. However we should be aware that there is a limit 

for this inspiration. We should not attempt to fully imitate 

biological systems because it is likely to have very limited 

success, as the flight pioneers have noticed [1]. The 

methodology required to develop biologically-inspired 

techniques includes the following steps: (1) the analogies 

between biology and IT systems at the conceptual level should 

be identified, (2) the biological entities, relationships and 

processes should be modeled from the computer science 

perspective and (3) a reverse mapping should be performed for 

validation purposes.  

Our vision is 

energy consumption can be designed and developed by 

inspiring from biology. In this paper, we present an immune-

inspired technique for optimizing server energy consumption 

while preserving its set of Green Performance Indicators and 

Key Performance Indicators (KPI) [2] [3]. This technique is 

similar with an artificial immune system associated to a server 

being able to detect non-optimal server energy consumption 

states (similar to biological pathogens) and to take the 

appropriate actions (similar to the biological immune response) 

required to bring the server into an optimal state. The 

optimization technique has two main stages: an initialization 

stage and a self-optimization stage. Within the initialization 

stage the server is monitored for a specific period of time to 

collect energy consumption historical raw data with the goal of 

identifying associations between the server energy 

consumption states and the appropriate optimization actions. 

Such an association represents an artificial immune cell 

composed of a detector (server energy consumption state) and 

an effector (the optimization actions).  

The self-optimization stage is designed as a control 

feedback loop with the following MAPE phases: Monitoring, 

Analyzing, Planning and Execution. In the monitoring phase, 

energy consumption server state snapshots are taken at regular 

time intervals and formally represented using a biologically-

inspired antigen model. The analysis phase classifies the 

current antigen as self (optimal energy consumption state) or 

non-self (non-optimal energy consumption state) using the set 

of detectors obtained in the initialization stage. The planning 

phase determines the actions (referred as effectors) that need to 

be taken to bring the server in an optimal energy consumption 

state using a biologically-inspired clonal selection approach. 

Within clonal selection, the affinity between the existing 

effectors and the current antigen is evaluated. The high affinity 

effectors are cloned and mutated to obtain the best effector to 

be run in the execution phase aiming at bringing the server into 

an optimal state.   
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In the biologically-inspired computing domain literature 

we have identified two main research directions: immune-

computing and swarm intelligence. 

Immune-computing uses ideas inspired by the biological 

immune system specific concepts and processes to design 

algorithms and techniques used to solve complex problems 

such as, learning, optimization and adaptive control [24]. The 

most important immune-inspired computational models 

relevant for the current research are the negative selection and 

the clonal selection models.  

 The negative selection models are inspired by a biological 

process aiming at training immature immune T-cells to 

correctly discriminate self molecules from the non-self ones. 

The first negative selection algorithm [4] was designed to 

generate detectors (T-cells) able to identify situations in which 

unauthorized changes led to the appearance of non-self strings 

(non-self antigens) in a set of self-strings that had to be 

protected [22]. In [5], the negative selection algorithm is 

applied to network intrusion detection. In this case, self-cells 

are represented as the frequently occurring data paths (source 

ip address, destination ip address, communication port), while 

non-self cells are considered to be the data-paths that are not 

normally observed on the network.  

The clonal selection models are inspired by the biological 

process in which B-cells specialize through affinity maturation 

and somatic hyper-mutation to provide a specific immune 

response when a newly pathogen is encountered. The first 

proposed clonal selection algorithm [6] was applied to function 

optimization and pattern recognition. In the case of function 

optimization, the candidate solutions represent the immune 

cells, while the antigen is the function that needs to be 

optimized. The value of the function for a particular solution is 

similar to the affinity between the immune cell and the antigen. 

In pattern recognition problems, the aim of applying the clonal 

selection algorithm is to produce a set of elements which can 

be used to recognize specific patterns [8]. The clonal selection 

algorithm can be used to solve other optimization problems, 

such as combinatorial optimization [7]. In [9], the clonal 

selection algorithm is used for selecting the optimal solution in 

automatic Web service composition. In this approach, a 

candidate Web service composition solution is mapped to an 

immune cell, a multi-criteria function that evaluates the QoS 

and semantic quality of a composition solution is mapped to an 

antigen, while affinity is the value of the multi-criteria function 

for a specific composition solution.  

Swarm intelligence aims at designing techniques and 

algorithms inspired by the collective behavior of social insects, 

birds, fish and even humans. The most important techniques 

that have been developed are ant colony optimization (ACO) 
[10] and particle swarm optimization (PSO) [11].  

The ant colony optimization techniques are inspired by the 

foraging behavior of ants. This technique considers a set of 

artificial ants which identify the solutions of an optimization 

problem and use a stigmergic type of communication (similar 

to real ants that communicate through the trails of pheromone 

they leave on their way) to exchange information about the 

quality of the solutions they find [10]. Ant colony optimization 

can be used to solve combinatorial optimization problems [12] 

and to find the shortest path in telecommunication networks 

[13]. The stigmergic communication using pheromones is used 

in [14] as a means of communication between agents in a 

wireless sensor network. Agents emit replication or migration 

pheromones encoding sensor data according to their local and 

external network conditions [14]. [15] applies pheromone-

based communication in pervasive environments as a means of 

communication between mobile agents. [16] presents a method 

for data clustering inspired by the way ants organize objects in 

clusters according to their properties. Within this method, a set 

of artificial ants pick up items occupying random (initially) 

positions on a grid and deposit them in areas containing other 

similar items.  

The particle swarm optimization techniques are inspired by 

the collective behavior of birds in search of food. In this 

technique a number of artificial particles which are collectively 

moving in a search space are used to find the global optima 

[22]. The technique is applied to various domains such as 

function optimization [17] or data clustering [18]. 

Regarding the use of biologically-inspired techniques for 

power management, few approaches can be found in the 

literature. Since biological systems naturally tend to conserve 

their energy, many simple principles found in the biological 

systems might be used in IT power management [19]. The 

adoption of biological principles such as decentralization, 

autonomy, natural selection or symbiosis in the process of 

designing and building applications or services on top of server 

farms is a novel research direction [20]. A service is designed 

as a biological entity, equivalent to an individual bee in a bee 

colony that competes or collaborates for computing resources. 

Using natural selection principles, the services that waste 

energy (i.e. services that gain resources but fail to use them) are 

banned for execution. In [14] a biologically-inspired agent 

based approach is used to manage the energy consumption in a 

wireless sensors network. The agent behavior focuses on 

biologically-inspired actions (e.g. pheromone emission, 

migration, death), each of them having an energetic cost 

associated. Through these actions, the life time and the state of 

each agent evolve autonomously and there is no need of a 

centralized control unit. In [21] swarm intelligence is combined 

with immune mechanisms to design network applications that 

adapt to dynamic changes in the network.  

This paper is structured as follows: section II presents an 

immune-inspired model for server energy consumption 

optimization, section III describes the biologically-inspired 

algorithms, section IV presents the experimental results while 

section V concludes the paper and shows the future work.  

II. IMMUNE-INSPIRED MODEL FOR SERVER ENERGY 

CONSUMPTION OPTIMIZATION  

After a thorough analysis of the biologically-inspired 

computing models we reached the conclusion that the 

biological immune system would represent a good source of 

inspiration in designing a technique for energy optimization. In 

the following sub-sections we present the immune concepts 

and processes that are relevant for our approach as well as the 
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mapping of these concepts to the problem of energy 

optimization. 

A. Biological Background 

The main objective of the biological immune system is to 

protect a living organism against harmful pathogens (antigen 

presenting cells that might cause diseases). In order to 

accomplish this, the immune system provides a collection of 

countermeasures able to detect and eliminate pathogens [22]. 

These countermeasures are provided by the immune system 

constituents who circulate throughout the body in the blood 

and the lymph and perform their functions in a distributed 

manner, interacting only through localized rules [25]. 

 The immune system can be viewed as a layered 

architecture. When a pathogen attacks a living organism it first 

needs to penetrate an external defense layer formed by the skin 

or the membranes that cover organs. If the pathogen succeeds 

to go through this first layer it interacts with a second defense 

layer which is represented by the innate immune system. The 

innate immune system consists of a set of detector and effector 

immune cells capable of rendering the pathogen harmless [22]. 

However, these two first defense layers are unspecific (they do 

not make any distinction between pathogens) and do not 

change over time.  

In time, pathogens adapt themselves such that the immune 

system will no longer have the suitable detector and effector 

cells to use. This is the moment in which the third defense 

layer, corresponding to the adaptive immune system, comes 

into action by generating the appropriate detector and effector 

cells. It is very important that the new cells do not detect the 

self-cells as a pathogen, since this will lead to autoimmune 

diseases. Furthermore, the new cells must be efficient in the 

fight with the pathogen.  

The generated cells pass through several phases until they 

are considered as part of the immune system [22]. The first 

phase consists of a negative selection process: each cell is 

tested against molecules of the host for auto-reactivity and it is 

eliminated if it proves to attack the host tissue. Next, through 

clonal selection, new and more specific effectors are generated: 

the effectors with the highest affinity with respect to the 

pathogen clone themselves. The clones are submitted to an 

affinity maturation process aiming at increasing their 

specificity for the invading pathogen. The resulting matured 

clones are submitted to a new selection process in which the 

clones having low affinity are eliminated while the ones with 

high affinity are differentiated into plasma and memory cells. 

The plasma cells secrete antibodies used to immediately 

eliminate the pathogen, while memory cells are kept in the 

immune memory to assure that the immune response to a 

similar pathogen encountered in the future will be much faster.  

In conclusion, the immune system issues two types of 

immune responses: (i) a slower primary immune response - 

issued at a first encounter with an unknown pathogen, situation 

that requires the generation of new detector and effector 

immune cells and (ii) a faster secondary immune response - 

issued at an encounter with a known pathogen, situation that 

requires the use of the appropriate immune cells stored in the 

immune memory. 

B. From Biological Immune Systems to Energy Optimization 

To optimize the energy consumption at a server level we 

have layer. 

One of the most important issues that need to be addressed in 

designing biologically-inspired computing techniques is to 

map the biological concepts to the problem that needs to be 

solved. In table I we present a mapping of adaptive immune 

system concepts and processe

energy optimization. 

TABLE I.  MAPPING OF IMMUNE SYSTEM CONCEPTS TO THE PROBLEM 

OF SERVER S ENERGY OPTIMIZATION 

 Immune System 

Concept 

Energy Optimization  

System Adaptive immune 
system  

Used to identify new server energy 
consumption states and determine 

the associated optimization actions 

 

Entities 

Antigen  The current server energy 

consumption state 

Self antigen  Optimal server energy consumption 

state 

Non-self antigen  Non-optimal server energy 

consumption state 

Immune cell - 
Detector   

Values of server energy 
consumption states 

Immune cell - 

Effector  

Optimization actions 

Clone  Copy of the optimization actions 

Immune memory  Knowledge base: server energy 

consumption states and associated 
optimization actions 

Processes  Primary response  First encounter with an unknown 

server energy consumption state, 
generate the appropriate 

optimization actions 

Secondary 

response  

Encounter with a known server 

energy consumption state, select the 
adaptation action plan from the 

knowledge base 

Affinity between 

antigen and 
immune cell  

Similarity between the current 

server energy consumption state and 
a state stored in the knowledge base 

Negative selection  Generates and improves a set of 

predefined detectors  

Clonal selection, 

Affinity 
maturation  

Generates, improves and selects the 

optimization actions 

An antigen represents the current energy consumption 

state of a server. The energy consumption state is indirectly 

given by the workload and resource usage snapshot in a 

specific timestamp. We formally define an antigen as: 

                       
),(= ttt PRLSRLA            (1) 

In (1), SRLt is the list of current resources usage for the 

server in the moment of time t (see also (2)) and PRL 

represents the list of processes requests for server resources 

(see also (3)). 

     
},,{ tttt levelMEMlevelHDDlevelCPUSRL

  
                       (2) 

We have modeled in our antigen only those server 

resources on which Dynamic Power Management actions (i.e. 
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modify the resource performance state to save energy) can 

apply (Hard-disk, Memory and Processor).   

         
 },,{ tttt levelMEMlevelHDDlevelCPUPRL

                  
(3) 

We define a self-antigen as an energy consumption state in 

which no optimization actions are required. On the other hand, 

a non-self antigen represents a non-optimal energy 

consumption server state in which optimization actions have 

to be generated, selected and enforced. The self/non-self 

discrimination of an antigen part of the negative selection 

process is performed by comparing it to two predefined 

optimal antigens: the idle antigen that represents the optimal 

idle state of the system and the active antigen that represents 

the optimal active state of the system. The levels of the active 

optimal antigen are considered as levelCPU = 7, levelMEM = 

7, levelHDD = 2, while the levels of the idle optimal antigen 

are considered as levelCPU = 1, levelMEM = 1 and levelHDD 

= 0. The affinity a, between current antigen / idle antigen and 

the afinity between current antigen / active antigen is 

determined as shown in (4) (for current antigen / idle antigen).  

||=),(
,

idleS

idle
SRL

idle
levelR

t
SRL

S
levelR

idlet levelRlevelRSRLSRLa (4) 

If  one of these affinities is below a certain threshold, T, 

then the antigen is self, otherwise it is non-self:  

 

 
selfnonotherwise

selfTSRLSRLaTSRLSRLa activetidlet ),(||),(

           

(5) 

A detector matches the structure of an antigen and 

represents a server energy consumption state for which the 

optimization actions are already known (relation (6)). The 

detector is used to classify the antigens in self and non-self.   

                        
),(= DD PRLSRLD                                     (6) 

The effector is a structure which contains the optimization 

actions that need to be executed for a non-self antigen 

(relation (7)). It is described by the sequence of actions to be 

taken for reaching an optimal state.  

                                  
},...,,{ 21 naaaE                              (7)  

The execution of an optimization action transitions the 

server from the energy state of time t into a t+1 time state 

(relation (8)).  We have modeled and used only DPM actions 

such as modifying the frequency of the processor, putting the 

hard disk to sleep or on stand-by . 

                                 1: tt SRLSRLa                                    (8) 

A detector and the optimization actions associated form an 

immune cell (see (9)) which is stored in an immune memory 

knowledge base (see (10)).  

),(= EDIC                                                                        (9) 

 

},...,,{ 21 nICICICIM                                                     (10) 

The immune memory is limited in size and cannot keep 

every immune cell ever produced. The immune cells are 

replaced according to how much and how recently they were 

used. The usefulness of each cell is computed in the following 

way: 

rankTimeusedTimesICU __)(                                (11) 

where Times_used represents how many times the immune 

cell IC was used so far and Time_rank represents how recently 

the immune cell IC was used. The constants ]1,0[,  give 

the relative importance of each of the two components.  

In the energy optimization problem we use the behavior of 

the adaptive immune system for the situation in which a new 

server energy consumption state is encountered. In this case, 

the first step is to search the immune memory knowledge base 

to determine if a previous similar situation exists by measuring 

the affinity between the knowledge base immune cells (the 

detector part) and the current antigen (server consuming state).  

We compute the affinity between a detector and an antigen 

using Manhattan distance (relation (12)) between their SRLs  

(resources of the system) and PRLs  (requests of the 

processes).  

||=),(
,

DA

D
SRL

D
levelR

A
SRL

A
levelR

levelRlevelRDAa  

 ||
,

DA

D
PRL

D
levelR

A
PRL

A
levelR

levelRlevelR          (12) 

The immune celll efector execution utility for the curent 

antigen can be determined using the current antigen, the 

predicted antigen and the predefined optimal antigen (for idle 

and active server states).  

The predicted antigen over x time units is generated using 

the the Holt-Winters Method [23] for trend forecasting and 

prediction. We predict the server resources required values at 

the moement t+x taking into acount the curent antigen and the 

incoming workload.  

),(= xttxt PRLSRLA                                                      (13) 

 

}},,{,{= where MEMHDDCPURlevelRPRL xtxt         (14) 

To predict the next requirement for each server resources a 

liniar regresion approach is used. We use three types of 

components in prediction (relation (15)): the estimate 

requirements value (ER), the workload trend (TR) and the 

server resources maximum workload (to prevent the prediction 

of requirements higher than the server maximum workload).  

)}max(,min{= levelRxTRERlevelR ttxt    

                        

tttt levelRTRERER )(1)(= 0110                          (15) 

 

))((1= 1111 tttt ERERTRTR           

The constants [0,1], 10  have the following meaning: if 

0  
is smaller, then more weight is given to recent levels and 

less weight is given to older levels. Similarly, 1 controls the 

importance given to the current or past trends. 
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Figure 1.  The biologically-inspired optimization technique MAPE phases 

III. THE BIO-INSPIRED ENERGY OPTIMIZATION TECHNIQUE 

The proposed biologically-inspired optimization technique 

has two main stages: an initialization stage and a self-

optimization stage. Within the initialization stage the server is 

monitored for a specific period of time to collect energy 

consumption historical raw data with the goal of identifying 

associations between the server energy consumption states and 

the appropriate optimization actions. During this stage an 

initial immune memory knowledge base is built using a 

negative selection process (see Fig. 2). The immune memory 

knowledge base is enhanced and refined in the self-

optimization stage.   

 

1. Algorithm  NEGATIVE-SELECTION 

2. Input:  AR  set of antigens; ; n  population size; c  cloning rate;    

        m  mutation step; T  affinity threshold 

3. Output: IM  immune memory 
4. Comments: A  antigen; IS-SELF  detects if an antigen is self/ non-

self; D  detector; SRLA/PRLA system resource levels/process 

request levels of antigen A; E  effector; SRLoptimal  optimal system 
resource levels; IM  immune memory 

5. begin 

6.     for i = 1 to |AR| do 
7.       A = AR[i] 

8.       if  (IS-SELF(A)) then 

9.         D = (SRLA, PRLA) 
10.         E = CLONAL-SELECTION(D, n, c, m, T) 

11.         IM = IM U {(D,E)} 

12.       end if 

13.     end for  

14. end 

Figure 2.  Negative selection algorithm 

In the following sub-sections we focus on the bio-inspired 

optimization technique, the self-optimization stage, presenting 

its MAPE phases and highlighting the main algorithms used at 

each phase (Fig. 1).   

A. Monitoring phase 

In the monitoring phase, energy consumption server state 

snapshots are taken at regular time intervals and formally 

represented using a biologically-inspired antigen model. A 

snapshot includes information about the CPU, HDD and MEM 

utilization levels. Also in this phase the processes server 

resources requests are recorded. The algorithm used to create 

the antigen for the current energy consumption state is 

presented in Fig. 3. 

 

1. Algorithm CREATE-ANTIGEN 

2. Input: P  active process request levels; SRL  system resource 

levels  

3. Output:  A  Antigen 

4. Comments: GET-MAX  returns the maximum CPU/HDD process 

request level; GET-SUM  computes the sum of the memory process 
request levels 

5. begin 

6.     levelCPUt =  GET-MAX(PCPU)  
7.     levelMEMt = GET-SUM(PMEM) 

8.     levelHDDt = GET-MAX(PHDD)  

9.     A = ( SRL, (levelCPUt, levelHDDt, levelMEMt)) 
10.     return A 

11. end 

Figure 3.  Antigen creation algorithm 

B. Analysis phase 

The analysis phase classifies the current antigen as self 

(optimal energy consumption state) or non-self (non-optimal 
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energy consumption state) using the set of detectors obtained 

in the initialization phase. The self/non-self discrimination 

(see Fig. 4) is performed by evaluating the affinity 

(COMPUTE-AFFINITY) between the current antigen and an 

idle/active antigen using relation (4). 

 

1. Algorithm  SELF-NON-SELF-DISCRIMINATION 

2. Input: A  current antigen; A0  idle antigen; AA  active antigen;  T  

threshold  
3. Output: self / non-self antigen 

4. Comments: a1, a2  the affinity between the current antigen and the 

idle/active antigen; T  affinity threshold     

5. begin 

6.     a1 = COMPUTE-AFINITY(A, A0)  

7.     a2 = COMPUTE-AFINITY (A, AA) 
8.     if (a1 < T) or (a2 < T) then return  self 

9.     return non-self 

10. end 

Figure 4.  Self / non-self discrimination  algorithm 

C. Planning phase 

The planning phase determines the actions that need to be 

taken to bring the server in an optimal energy consumption 

state.  The planning has the following steps. 

Step1. The immune memory knowledge base is checked to 

determine if similar server energy consumption states have 

been previously encountered. Relation (12) is used to measure 

the affinity between the knowledge base immune cells (the 

detector part) and the current antigen (server consuming state). 

If a similar server energy consumption states is found the 

associated optimization actions are executed. 

Step2. If no similar server energy consumption state is 

found then new optimization actions need to be generated.  

Step3. Use a clonal selection-based approach on the 

memory cells with the highest affinity to the current energy 

situation (SELECT-HIGHEST-AFFINITY-CELLS) to 

generate the best sequence of optimization actions (see Fig. 5).  

 

1. Algorithm CLONAL-SELECTION  

2. Input: D  detector to clone; n  population size; c  cloning rate;    

        m  mutation step; T  affinity threshold 

3. Output: E  new effector 
4. Comments: RH  set of effectors with the highest affinity regarding 

the current antigen, the predicted antigen and the optimal system 

resource levels; CLONE  clones the elements in RH c times; RM  - set 
of mutated RH elements; m  mutation rate; RR  set of randomly 

generated effectors; SELECT-TOP  selects the best effectors; 
SELECT-BEST  selects the best effector E; UTILITY  computes 

the utility of an effector; T  utility threshold 

5. begin 

6.     RH -HIGHEST-AFFINITY-CELLS()  

7.     repeat 

8.        RH = CLONE(RH,c)  
9.        RM = MUTATE(RH, m) 

10.        RR = GENERATE-RANDOM()  

11.        RH = SELECT-TOP(RH U RM U RR)  

12.        E = SELECT-BEST(RH)  
13.     until (UTILITY(E, Acurrent, Apredicted, SRLoptimal) < T) or   

                                                                     (cutoff reached) 

14. return E 

15. end 

Figure 5.  Clonal selection algorithm 

The high affinity memory cells are mutated using a 

reinforcement learning-based strategy (see Fig. 6). 
 

1. Algorithm MUTATE 

2. Input: RH - set of effectors to mutate, m  mutation step 

3. Output: RM - mutated set of effectors 

4. Comments: E  effector; GET-NR-RESOURCES  returns the 
number of monitored system resources; MUTATE-RESOURCE - 

modifies the value of the resource with the index j with + or  the 

mutation step m; EPLUS/EMINUS  the mutated effector; UTILITY  

computes the utility of an effector 

5. begin 

6.     RM =  

7.     for i = 1 to |RH |do 

8.       E = RH[i] 

9.       for j =1 to GET-NR-RESOURCES() do 
10.         EPLUS = MUTATE-RESOURCE(E, j, m,+) 

11.         if (UTILITY(EPLUS) > UTILITY(E)) then E = EPLUS 

12.         EMINUS = MUTATE-RESOURCE(E, j, m,-) 
13.         if (UTILITY(EMINUS) > UTILITY(E)) then E = EMINUS 

14.       end for 

15.       RM = RM U {E} 

16.     end for 

17.     return RM 

18. end  

Figure 6.  Mutation algorithm 

D. Execution phase  

In this phase the optimization actions generated in the 

planning phase are enforced on the server and a new immune 

cell is created and stored in the immune memory (see Fig. 7).  

 

1. Algorithm  EXECUTE-OPTIMIZATION-ACTION  

2. Input: Acurrent  the current antigen, Ecurrent  the efector 

            determined in the planning phase, IM  current version of  

            the immune memory  
3. Output: server energy optimal state 

4. Comments: EXECUTE-ACTION  executes the actions encoded in 

an effector; IC  immune cell; IM  immune memory  

5. begin 

6.     EXECUTE-ACTION(Ecurrent) 

7.     IC = (Acurrent, Ecurrent) 

8.     IM = IM U { (D,E) } 

9. end 

Figure 7.  Execution phase algorithm 

IV. EXPERIMENTAL RESULTS 

We have tested our solution on a system with a dual core 

CPU, two hard disks and a memory. The technical 

characteristics are summarized in Table 2.  

TABLE II.  HARDWARE RESOURCES 

CPU Intel Core 2 Duo (2.4 GHz) 

HDD0 500 GB, 7200 rpm 

HDD1 160 GB, 7200 rpm 

Memory 4 GB 

 

The software resources involved in the testing of the self-

optimizing algorithm consist of: (i) Ubuntu 10.04, 2.6.32-21-

generic kernel as the server operating system, (ii) Hyperic 

Sigar [26], cpufreq-info, hdparm for monitoring the server 

components, (iii) cpufreq-set, hdparm, sysctl to enforce the 
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optimization actions and (iv) the stress program to generate 

the testing workload (see Fig. 8). The threshold T is set to 1.0, 

and the prediction constants are set to 5.010 .  

 

Controlling Tools

sysctl
cpufreq-

set
hdparm

Monitoring Tools

Hyperic Sigar cpufreq-info hdparm

Ubuntu 10.04 kernel

CPU HDD MEM

Stress Tool

CPU workersvm-workers vm-bytesvm-hang timeout

 
Figure 8.  The self-optimizing software resources stack  

For testing purposes, we have generated a number of 

resource-intensive tasks, along with their process requirements 

using the stress tool. The stress tool uses the following 

parameters to generate the proper workload: 

 CPU workers  how many workers to launch running 

on sqrt(). More workers imply more CPU load. 

 Vm-workers  how many workers to launch running 

on malloc()/free(). We only launch one, as we need to 

occupy memory without affecting the CPU. 

 vm-bytes  how many bytes of memory to occupy 

during malloc(). 

 vm-hang  wait period before freeing memory (in 

seconds). 

 timeout  how long to stress the system (in seconds). 

To wake the HDDs, we simply periodically create/delete a 

text file. A HDD is awaken if there is any attempt to access it. 

During the initialization stage, the system is monitored and 

most representative antigens are selected. Detectors and 

effectors are created from these antigens, which form the basis 

of the innate immune system. Negative selection is applied to 

each detector, in order to test if it is auto-reactive. After 

completing the initialization stage, the optimization stage is 

started. The optimization stage uses a 2 seconds time interval 

to run all its MAPE phases. 

Fig. 9 presents the adaptation actions taken by the self-

optimizing algorithm to distribute the incoming workload in 

an energy efficient manner. It can be noticed that by correctly 

predicting the next antigen, the CPU, HDD and MEM states 

closely follow the incoming workload. In this way, the 

following energy inefficient situations are avoided: (i) putting 

the CPU/HDD/MEM in a low power state when there is a high 

workload in the near future and (ii) putting the CPU/HDD/ 

MEM in a high power state for a short peak workload (over 

provisioned resources problem is avoided). 

V. CONCLUSIONS 

This paper presents an immune-inspired model and 

technique for optimizing the server energy consumption. The 

proposed technique is able to detect non-optimal server energy 

consumption states and to take the appropriate actions for 

bringing the server into an optimal energy consumption state. 

The results are promising, showing that the self-optimization 

technique is able to correctly predict the server CPU, MEM 

and HDD workload values. By executing dynamic power 

management actions, the server computing resources energy 

states closely follow the incoming workload.  

For future work we intend to determine the server energy 

efficiency by means of a power meter and by comparing the 

server energy consumption when the server is managed using 

our self-optimization algorithm and when the default operating 

system management is applied. 

 

 
Figure 9.  Server resources evolution over time 
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